GEDI-Related Publications

Access the GEDI-related publications Zotero group here.

2024

Woodgate, W., Phinn, S., Devereux, T., & Aryal, R. R. (2025). Bushfire recovery at a long-term tall eucalypt flux site through the lens of a satellite: Combining multi-scale data for structural-functional insight. Remote Sensing of Environment317, 114530.

Donev, P., Wang, H., Qin, S., Li, X., Zhang, M., Liu, S., & Wang, X. (2024). Cross-modal fusion approach with Multispectral, LiDAR, and SAR data for Forest Canopy Height Mapping in Mountainous Region. Physics and Chemistry of the Earth, Parts A/B/C, 103819.

Huang, J., & Cao, X. (2024). Assessment and Optimization of Forest Aboveground Biomass in Liaoning Province. Forests15(12), 2095.

Gutiérrez-Vélez, V. H., Rodriguez-Escobar, J., Mejía, A., Espejo, J., Anaya, J. A., & Blair, M. E. (2024). Mapping forest cover and change as continuous variables is essential to advance consistency across forest monitoring products. GIScience & Remote Sensing61(1), 2427305.

Gu, H. (2024, October). Exploration of a Neural Network Transfer Learning Approach to Estimate Aboveground Biomass with Insufficient Temporal Data. In 2024 Sixth International Conference on Intelligent Computing in Data Sciences (ICDS) (pp. 1-6). IEEE.

Hakkenberg, C. R., Clark, M. L., Bailey, T., Burns, P., & Goetz, S. J. (2024). Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions. Communications Earth & Environment5(1), 721.

Altarez, R. D. D., Apan, A., & Maraseni, T. (2024). Integrated multi-satellite data and machine learning approach in mapping the successional stages of forest types in a tropical montane forest. Remote Sensing Applications: Society and Environment, 101407.

Chen, R., Wang, X., Liu, X., & Wang, S. (2024). Optimizing GEDI Canopy Height Estimation and Analyzing Error Impact Factors Under Highly Complex Terrain and High-Density Vegetation Conditions. Forests15(11).

Cǎțeanu, M., & Miclescu, S. M. (2024). Evaluation of GEDI/ICESat-2 Satellite Lidar Datasets for Ground Surface Modelling. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Forestry and Cadastre81(2), 1-11.

Alvites, C., O’Sullivan, H., Saverio, F., Marco, M., Santopuoli, G., Chirici, G., … & Bazzato, E. (2024). Canopy Height Mapper: a Google Earth Engine application for predicting global canopy heights combining GEDI with multi-source data. Environmental Modelling & Software, 106268.

Kaya, Y. (2024). Automated Estimation of Building Heights with ICESat-2 and GEDI LiDAR Altimeter and Building Footprints: The Case of New York City and Los Angeles. Buildings14(11), 3571.

Huang, J., Thilini Madushani, J. A., Xia, T., & Gan, X. (2024). Optimizing Forest Canopy Height Estimation Through Varied Photon-Counting Characteristic Parameter Analysis, Window Size, and Forest CoverForests15(11), 1957.

Ghivarry, G., Kutchartt, E., & Pirotti, F. (2024). Assessing the potential of polarimetric decomposition of Sentinel-1 SAR for the estimation of mangrove forest biomass. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences48, 183-190.

Bhuyan, M., Jeganathan, C., & Pujar, G. S. (2024). Enhancing Forest Canopy Height Mapping in Kaziranga National Park, Assam, by Integrating LISS IV and SAR data with GEDI LiDAR data Using Machine Learning. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences10, 39-44.

Putzenlechner, B., Bevern, F., Koal, P., Grieger, S., Kappas, M., Koukal, T., … & Filipponi, F. (2024). Accuracy assessment of LAI, PAI and FCOVER from Sentinel-2 and GEDI for monitoring forests and their disturbance in Central Germany. European Journal of Remote Sensing, 2422323.

Han, H., Xu, K., Zhang, Z., Zhao, P., Jiang, H., & Ding, A. (2024). Impact of GEDI-derived Forest Vertical Structure Characteristics on the Accuracy Gains in Regional Dominant Tree Species Mapping. IEEE Geoscience and Remote Sensing Letters.

Simard, M., Denbina, M., Marshak, C., & Neumann, M. (2024). A global evaluation of radar‐derived digital elevation models: SRTM, NASADEM, and GLO‐30. Journal of Geophysical Research: Biogeosciences129(11), e2023JG007672.

Ma, Z., Zhang, S., Camps, A., Park, H., Liu, Q., Tan, P., & Wang, C. (2024). A fast and efficient method to estimate inland water levels using CYGNSS L1 data and DTMs: Application to Floods, lakes and reservoirs monitoring. Journal of Hydrology, 132258.

Liao, Z., Yue, C., He, B., Zhao, K., Ciais, P., Alkama, R., … & Wang, M. (2024). Growing biomass carbon stock in China driven by expansion and conservation of woody areas. Nature Geoscience, 1-8.

Di Tommaso, S., Wang, S., Strey, R., & Lobell, D. B. (2024). Mapping sugarcane globally at 10 m resolution using Global Ecosystem Dynamics Investigation (GEDI) and Sentinel-2. Earth System Science Data16(10), 4931-4947.

Wang, Z., Yang, X., & Cai, H. (2024). Optimizing key parameters (biological-control factor) of soil erosion simulation models at a regional scale–The case of Jiangxi Province, ChinaCATENA247, 108488.

Hosseiny, B., Zaboli, M., & Homayouni, S. (2024). Forest Change Mapping using Multi-Source Satellite SAR, Optical, and LiDAR Remote Sensing Data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences10, 163-168.

Jiang, H., Li, Y., Yan, G., Li, W., Li, L., Yang, F., … & Morsdorf, F. (2024). Unveiling Anomalies in Terrain Elevation Products from Spaceborne Full-Waveform LiDAR over Forested Areas. Forests15(10), 1821.

Pandey, P. C. (2024). Relationship of bioclimatic and topographic variation on species-biomass distribution in tropical forest reserve. Tropical Ecology, 1-15.

Barry, B. R., Holbrook, J. D., Vogeler, J. C., Elliott, L. H., Weldy, M. J., Lesmeister, D. B., … & Vierling, K. T. (2024). Using spaceborne LiDAR to reveal drivers of animal demography. Ecological applications: a publication of the Ecological Society of America, e3048.

Picard, J., Nungi‐Pambu Dembi, M. M., Barbier, N., Cornu, G., Couteron, P., Forni, E., … & Réjou‐Méchain, M. (2024). Combining satellite and field data reveals Congo’s forest types structure, functioning and compositionRemote Sensing in Ecology and Conservation.

Moudrý, V., Gábor, L., Marselis, S., Pracná, P., Barták, V., Prošek, J., … & Wild, J. (2024). Comparison of three global canopy height maps and their applicability to biodiversity modeling: Accuracy issues revealed. Ecosphere, 15(10), e70026.

Pourrahmati, M. R., Baghdadi, N., Scolforo, H. F., Alvares, C. A., Stape, J. L., Fayad, I., & le Maire, G. (2024). Integration of very high-resolution stereo satellite images and airborne or satellite Lidar for Eucalyptus canopy height estimation. Science of Remote Sensing, 100170.

Xu, J., Farwell, L., Radeloff, V. C., Luther, D., Songer, M., Cooper, W. J., & Huang, Q. (2024). Avian diversity across guilds in North America versus vegetation structure as measured by the Global Ecosystem Dynamics Investigation (GEDI)Remote Sensing of Environment315, 114446.

Li, Q., Wang, D., Liu, F., Yu, J., & Jia, Z. (2024). LightGBM hybrid model based DEM correction for forested areas. PloS one19(10), e0309025.

Ortiz-Reyes, A. D., Barrera-Ortega, D., Velasco-Bautista, E., Romero-Sánchez, M. E., & Correa-Díaz, A. (2024). Predicting forest parameters through generalized linear mixed models using GEDI metrics in a temperate forest in Oaxaca, MexicoInternational Journal of Remote Sensing, 1-24.

Bincai, C., Jianrong, W., Xueliang, L., YongQiang, W., & Zhuang, L. (2024). Spaceborne laser altimetry data processing and application. IntechOpen. doi: 10.5772/intechopen.1004899

Normandin, C., Frappart, F., Baghdadi, N., Bourrel, L., Luque, S. P., Ygorra, B., … & Wigneron, J. P. First results of the Surface Water Ocean Topography (SWOT) observations to rivers elevation profiles in the Cuvette Centrale of the Congo Basin. Frontiers in Remote Sensing5, 1466695.

Lutz, N., Oliveras, I., & Rodriguez-Veiga, P. (2024). Estimating vegetation structure and aboveground carbon storage in Western Australia using GEDI LiDAR, Landsat, and Sentinel data. Environmental Research: Ecology.

Bührs, M., Zepp, H., & Schmitt, T. (2024). Evaluating urban biodiversity: Effectiveness of citizen science driven species distribution models in urban ecosystems: A case study in the Ruhr Metropolis, GermanyERDKUNDE, 195-224.

de Conto, T., Armston, J., & Dubayah, R. (2024). Characterizing the structural complexity of the Earth’s forests with spaceborne lidar. Nature Communications15(1), 8116.

Krawczyk, W., & Wężyk, P. (2024). How to get closer to actual forest stand height using GEDI? A case study in central European Scots pine stands. European Journal of Remote Sensing, 2399209.

Wang, Z., Liu, J., Sheng, Y., & Yang, X. (2024). Intercomparison of the DART model and GEDI simulator for simulating GEDI waveforms in forests. International Journal of Applied Earth Observation and Geoinformation, 134, 104148.

Yan, K., Ding, C., & Qi, J. (2024). New Insights into Remote Sensing of Vegetation Structural ParametersForests15(9), 1555.

Min, W., Chen, Y., Huang, W., Wilson, J. P., Tang, H., Guo, M., & Xu, R. (2024). Incorporating of spatial effects in forest canopy height mapping using airborne, spaceborne lidar and spatial continuous remote sensing data. International Journal of Applied Earth Observation and Geoinformation133, 104123.

Li, Y., Fang, H., Wang, Y., Li, S., Ma, T., Wu, Y., & Tang, H. (2024). Validation of the vertical canopy cover profile products derived from the GEDI over selected forest sites. Science of Remote Sensing, 100158.

Li, Y., Gao, S., Fu, H., Zhu, J., Hu, Q., Zeng, D., & Wei, Y. (2024). Error Analysis and Accuracy Improvement in Forest Canopy Height Estimation Based on GEDI L2A Product: A Case Study in the United States. Forests15(9), 1536.

Ticehurst, C., & Newnham, G. (2024). Producing annual Australia-wide vegetation height images from GEDI and Landsat data. International Journal of Remote Sensing45(18), 6445-6469.

Wang, R., Lu, Y., Lu, D., & Li, G. (2024). Improving extraction of forest canopy height through reprocessing ICESat-2 ATLAS and GEDI data in sparsely forested plain regions. GIScience & Remote Sensing, 61(1), 2396807.

Simard, M., Fatoyinbo, L., Thomas, N., Stovall, A., Parra, A., Denbina, M. W., … & Hajnsek, I. (2024). CMS: Global Mangrove Canopy Height Maps Derived from TanDEM-X, 2015. ORNL DAAC, Oak Ridge, Tennessee, USA.

May, P. B., Schlund, M., Armston, J., Kotowska, M. M., Brambach, F., Wenzel, A., & Erasmi, S. (2024). Mapping aboveground biomass in Indonesian lowland forests using GEDI and hierarchical models. Remote Sensing of Environment313, 114384.

Li, J., Ding, Y., Xie, T., Bai, S., Zhang, X., & Wang, C. (2024). Integrative plant area index retrieval and spatiotemporal analysis in Taihu Lake Basin via synergistic active-passive remote sensing techniques. International Journal of Remote Sensing45(18), 6077-6095.

Tran, T. T., & Huynh, H. X. (2023, October). Comprehensive Survey On Remote Sensing Image Processing Techniques for Image Classification. In International Conference on Context-Aware Systems and Applications (pp. 102-114). Cham: Springer Nature Switzerland.

Chen, Y., Wang, Y., Li, L., Cui, Y., Duan, X. & Long, D. (2024). Monthly monitoring of inundated areas and water storage dynamics in China’s large reservoirs using multisource remote sensing. Water Resources Research, 60, e2023WR036450.

Leite, R. V., Amaral, C., Neigh, C. S., Cosenza, D. N., Klauberg, C., Hudak, A. T., … & Silva, C. A. (2024). Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management. Remote Sensing in Ecology and Conservation.

Burns, P., Hakkenberg, C. R., & Goetz, S. J. (2024). Multi-resolution gridded maps of vegetation structure from GEDI. Scientific Data11(1), 881.

Yang, X., Wang, C., Xi, X., Niu, Z., Li, D., Nie, S., … & Wang, R. (2024). Assessment of Multiple Scattering in LiDAR Canopy Waveform. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

Kamath, H. G., Singh, M., Malviya, N., Martilli, A., He, L., Aliaga, D., … & Niyogi, D. (2024). GLObal Building heights for Urban Studies (UT-GLOBUS) for city-and street-scale urban simulations: Development and first applications. Scientific Data11(1), 886.

Yang, H., Qin, Z., Shu, Q., Xi, L., Xia, C., Wu, Z., … & Duan, D. (2024). Estimation of the Aboveground Carbon Storage of Dendrocalamus giganteus Based on Spaceborne Lidar Co-Kriging. Forests15(8), 1440.

Liu, X., Forkel, M., & Kranz, J. (2024). Investigating the Association of Seasonal Dynamics in GEDI Canopy Cover Profiles and Sentinel-1 Backscatter in Temperate Forests. IEEE Geoscience and Remote Sensing Letters.

Cai, Y., Xu, X., Zhu, P., Nie, S., Wang, C., Xiong, Y., & Liu, X. (2024). Unveiling spatiotemporal tree cover patterns in China: The first 30 m annual tree cover mapping from 1985 to 2023. ISPRS Journal of Photogrammetry and Remote Sensing, 216, 240-258.

Cooley, S. S., Pinto, N., Becerra, M., Alvarado, J. W. V., Fahlen, J. C., Rivera, O., … & Menge, D. N. (2024). Combining spaceborne lidar from the Global Ecosystem Dynamics Investigation with local knowledge for monitoring fragmented tropical landscapes: A case study in the forest–agriculture interface of Ucayali, Peru. Ecology and Evolution14(8), e70116.

Liang, S., He, T., Huang, J., Jia, A., Zhang, Y., Cao, Y., … & Song, L. (2024). Advances in high-resolution land surface satellite products: A comprehensive review of inversion algorithms, products and challenges. Science of Remote Sensing, 100152.

Li, H., Hiroshima, T., Li, X., Hayashi, M., & Kato, T. (2024). High-resolution mapping of forest structure and carbon stock using multi-source remote sensing data in Japan. Remote Sensing of Environment312, 114322.

Simard, M., Fatoyinbo, L., Thomas, N., Stovall, A., Parra, A., Denbina, M. W., … & Hajnsek, I. (2024). CMS: Global Mangrove Canopy Height Maps Derived from TanDEM-X, 2015. ORNL DAAC, Oak Ridge, Tennessee, USA.

Vázquez-Rowe, I., Cucchi, C., Moya, L., Parodi, E., & Kahhat, R. (2024). Applying the multi-dimensional damage assessment (MDDA) methodology to the Cumbre Vieja volcanic eruption in La Palma (Spain). Natural Hazards, 1-32.

Elliott, L., Vogeler, J. C., Holbrook, J. D., Barry, B. R., & Vierling, K. T. (2024). Assessing GEDI data fusions to map woodpecker distributions and biodiversity hotspots. Environmental Research Letters, 19, 094027.

Chazette, M., Chazette, P., Reiter, I. M., Shang, X., Totems, J., Orts, J. P., … & Montes, N. (2024). Assessment of carbon mass in a Mediterranean downy oak ecosystem using airborne lidar and NASA Global Ecosystem Dynamics Investigation (GEDI) data. Biogeosciences21(14), 3289-3303.

Martins, F. C., Godinho, S., Guiomar, N., Medinas, D., Rebelo, H., Segurado, P., & Marques, J. T. (2024). Vegetation canopy height shapes bats’ occupancy: a remote sensing approach. GIScience & Remote Sensing61(1), 2374150.

Carcereri, D., Rizzoli, P., Dell’Amore, L., Bueso-Bello, J. L., Ienco, D., & Bruzzone, L. (2024). Generation of country-scale canopy height maps over Gabon using deep learning and TanDEM-X InSAR data. Remote Sensing of Environment, 311, 114270.

Besic, N., Durrieu, S., Schleich, A., & Vega, C. (2024). Using structural class pairing to address the spatial mismatch between GEDI measurements and NFI plots. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

Chou, T. C., Zhu, X., & Reef, R. (2024). Improving post-fire GEDI canopy height accuracy and canopy height mapping through convolutional neural network model. International Journal of Remote Sensing45(15), 5248-5265.

Hung, W. T., Campbell, P. C., Moon, Z., Saylor, R., Kochendorfer, J., Lee, T. R., & Massman, W. (2024). Evaluation of an in‐canopy wind and wind adjustment factor model for wildfire spread applications across scales. Journal of Advances in Modeling Earth Systems16(7), e2024MS004300.

Demol, M., Aguilar-Amuchastegui, N., Bernotaite, G., Disney, M., Duncanson, L., Elmendorp, E., … & Burt, A. (2024). Multi-scale lidar measurements suggest miombo woodlands contain substantially more carbon than thought. Communications Earth & Environment, 5(1), 366.

Stritih, A., Senf, C., Marsoner, T., & Seidl, R. (2024). Mapping the natural disturbance risk to protective forests across the European Alps. Journal of Environmental Management, 366, 121659.

Pascual, A., Grau-Neira, A., Morales-Santana, E., Cereceda-Espinoza, F., Pérez-Quezada, J., Martínez, A. C., & Fuentes-Castillo, T. (2024). Old-growth mapping in Patagonia’s evergreen forests must integrate GEDI data to overcome NFI data limitations and to effectively support biodiversity conservation. Forest Ecology and Management568, 122059.

Yao, S., Tan, K., Wang, Y., Zhang, W., Liu, S., & Yang, J. (2024). Estimating terrain elevations at 10 m resolution by Integrating random forest machine learning model and ICESat-2, Sentinel-1, and Sentinel-2 satellite remotely sensed dataInternational Journal of Applied Earth Observation and Geoinformation132, 104010.

Bourgoin, C., Ceccherini, G., Girardello, M., Vancutsem, C., Avitabile, V., Beck, P. S. A., … & Achard, F. (2024). Human degradation of tropical moist forests is greater than previously estimated. Nature, 1-7.

Doughty, C. E., Gaillard, C., Burns, P., Malhi, Y., Shenkin, A., Minor, D., … & Tang, H. (2024). Satellite derived trait data slightly improves tropical forest biomass, NPP and GPP estimates. Journal of Geophysical Research: Biogeosciences129(7), e2024JG008108.

Wang, X., Wang, R., Wei, S., & Xu, S. (2024). Application of Random Forest Method Based on Sensitivity Parameter Analysis in Height Inversion in Changbai Mountain Forest Area. Forests, 15(7), 1161.

Zhao, Z., Jiang, B., Wang, H., & Wang, C. (2024). Forest Canopy Height Retrieval Model Based on a Dual Attention Mechanism Deep Network. Forests, 15(7), 1132.

Favrichon, S., Dalagnol, R., Ordway, E. M., Medjibe, V., Manfoumbi, F., Obame, C., … & Saatchi, S. (2024). Unveiling spatial variations of high forest live biomass carbon stocks of Gabon using advanced remote sensing techniques. Environmental Research Letters19(7), 074038.

Khan, M. N., Tan, Y., Gul, A. A., Abbas, S., & Wang, J. (2024). Forest Aboveground Biomass Estimation and Inventory: Evaluating Remote Sensing-Based Approaches. Forests, 15(6), 1055.

Deng, X., Liu, Y., & Cheng, X. (2024). Forest canopy height modelling based on photogrammetric data and machine learning methods. The Photogrammetric Record.

Gao, Y., Yun, T., Chen, B., Lai, H., Wang, X., Wang, G., … & Kou, W. (2024). Improving the accuracy of canopy height mapping in rubber plantations based on stand age, multi-source satellite images, and random forest algorithm. International Journal of Applied Earth Observation and Geoinformation131, 103941.

Swarada, B., Pasha, S. V., Manohara, T. N., Suresh, H. S., & Dadhwal, V. K. (2024). Assessing Landslide-Driven Deforestation and Its Ecological Impact in the Western Ghats: A Multi-Source Data Approach. Journal of the Indian Society of Remote Sensing, 1-15.

Van der Sluijs, J., Saiet, E., Fraser, R. H., Kokelj, S. V., & Bakelaar, C. N. (2024). Validation of beyond visual-line-of-sight drone photogrammetry for terrain and canopy height applications. Remote Sensing Applications: Society and Environment, 101266.

Stritih, A., Senf, C., Kuemmerle, T., Munteanu, C., Dzadzamia, L., Stritih, J., … & Seidl, R. (2024). Same, but different: similar states of forest structure in temperate mountain regions of Europe despite different social-ecological forest disturbance regimes. Landscape Ecology39(6), 114.

Burns, P., Hakkenberg, C., & Goetz, S. J. (2024). Gridded GEDI Vegetation Structure Metrics and Biomass Density at Multiple Resolutions. ORNL DAAC, Oak Ridge, Tennessee, USA.

Sataudom, N., Reangsang, S., Navakam, S., Manoonpong, P., Aobpaet, A., Sunthornhao, P., … & Supavetch, S. (2024, April). A Deep Learning Approach with Uncertainty Estimation to Assess Aboveground Biomass Mapping of Tropical Rainforest in Thailand. In 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS) (pp. 291-295). IEEE.

Rajab Pourrahmati, M., le Maire, G., Baghdadi, N., Ferraco Scolforo, H., Alcarde Alvares, C., Stape, J. L., & Fayad, I. (2024). Effects of Eucalyptus plantation characteristics and environmental factors on GEDI waveform metrics. International Journal of Remote Sensing45(11), 3737-3763.

Li, W., Guo, W. Y., Pasgaard, M., Niu, Z., Wang, L., Chen, F., … & Svenning, J. C. (2024). Unmanaged naturally regenerating forests approach intact forest canopy structure but are susceptible to climate and human stress. One Earth.

Fang, J., & Wang, Y. (2024). Decomposition of full-waveform LiDAR data utilizing an adaptive B-spline-based model and particle swarm optimization. Measurement, 115002.

De Conto, T., Armston, J., & Dubayah, R. O. (2024). GEDI L4C Footprint Level Waveform Structural Complexity Index, Version 2. ORNL DAAC, Oak Ridge, Tennessee, USA.

Wang, Z., Cai, H., & Yang, X. (2024). A new method for mapping vegetation structure parameters in forested areas using GEDI data. Ecological Indicators, 112157.

Campbell, M. J., Eastburn, J. F., Dennison, P. E., Vogeler, J. C., & Stovall, A. E. (2024). Evaluating the performance of airborne and spaceborne lidar for mapping biomass in the United States’ largest dry woodland ecosystem. Remote Sensing of Environment308, 114196.

Guerra-Hernández, J., Pereira, J. C., Stovall, A., & Pascual, A. (2024). Impact of fire severity on forest structure and biomass stocks using NASA GEDI data. Insights from the 2020 and 2021 wildfire season in Spain and Portugal. Science of Remote Sensing, 100134.

Holcomb, A., Burns, P., Keshav, S. & Coomes, D. A. (2024). Repeat GEDI footprints measure the effects of tropical forest disturbances. Remote Sensing of Environment, 308, 114174.

May, P. B., Dubayah, R. O., Bruening, J. M., & Gaines III, G. C. (2024). Connecting spaceborne lidar with NFI networks: A method for improved estimation of forest structure and biomass. International Journal of Applied Earth Observation and Geoinformation129, 103797.

Jha, N., Healey, S. P., Yang, Z., Ståhl, G., & Betts, M. G. (2024). Vicarious calibration of GEDI biomass with landsat age data for understanding secondary forest carbon dynamics. Environmental Research Letters.

Hunka, N., Duncanson, L., Armston, J., Dubayah, R., Healey, S. P., Santoro, M., … & Melo, J. (2024). Intergovernmental Panel on Climate Change (IPCC) Tier 1 forest biomass estimates from Earth Observation.

Bruening, J. M., Dubayah, R. O., Pederson, N., Poulter, B., & Calle, L. (2024). Definition criteria determine the success of old-growth mapping. Ecological Indicators, 159, 111709.

Magruder, L. A., Farrell, S. O., Neuenschwander, A., Duncanson, L., Csatho, B., Kacimi, S., & Fricker, H. A. (2024). Monitoring Earth’s climate variables with satellite laser altimetry. Nature Reviews Earth & Environment. https://doi.org/10.1038/s43017-023-00508-8

Lowe, C. J., McGrath, C. N., Hancock, S., Davenport, I., Todd, S., Hansen, J., … & Macdonald, M. (2024). Spacecraft and optics design considerations for a spaceborne lidar mission with spatially continuous global coverage. Acta Astronautica214, 809-816.

Shannon, E. S., Finley, A. O., Hayes, D. J., Noralez, S. N., Weiskittel, A. R., Cook, B. D., & Babcock, C. (2024). Quantifying and correcting geolocation error in spaceborne LiDAR forest canopy observations using high spatial accuracy data: A Bayesian model approach. Environmetrics, e2840.

May, P. B., Finley, A. O., & Dubayah, R. O. (2024). A spatial mixture model for spaceborne lidar observations over mixed forest and non-forest land types. Journal of Agricultural, Biological and Environmental Statistics, 1-24.

Barinas, G., Good, S. P., & Tullos, D. (2024). Continental Scale Assessment of Variation in Floodplain Roughness With Vegetation and Flow Characteristics. Geophysical Research Letters51(1), e2023GL105588.

Lahssini, K., Baghdadi, N., Le Maire, G., Dupuy, S., & Fayad, I. (2024). Use of GEDI Signal and Environmental Parameters to Improve Canopy Height Estimation over Tropical Forest Ecosystems in Mayotte Island. Canadian Journal of Remote Sensing50(1), 2351004.

Diaz-Kloch, N., & Murray, D. L. (2024). Harmonizing GEDI and LVIS Data for Accurate and Large-Scale Mapping of Foliage Height Diversity. Canadian Journal of Remote Sensing, 50(1), 2341762.

Fayad, I., Ciais, P., Schwartz, M., Wigneron, J. P., Baghdadi, N., de Truchis, A., … & Bazzi, H. (2024). Hy-TeC: a hybrid vision transformer model for high-resolution and large-scale mapping of canopy height. Remote Sensing of Environment, 302, 113945.

Marcus, M. S., Hergoualc’h, K., Coronado, E. N. H., & Gutiérrez-Vélez, V. H. (2024). Spatial distribution of degradation and deforestation of palm swamp peatlands and associated carbon emissions in the Peruvian Amazon. Journal of Environmental Management, 351, 119665.

Jung, J. A., Cho, Y., Lee, S., & Lee, M. J. (2024). Actions to Expand the Use of Geospatial Data and Satellite Imagery for Improved Estimation of Carbon Sinks in the LULUCF Sector. 대한원격탐사학회지 (Korean Journal of Remote Sensing), 40(2), 203-217.

Lei, Y., Wang, Y., Wang, G., Song, C., Cao, H., & Xiao, W. (2024). Estimating Forest Canopy Height based on GEDI Lidar Data and Multi-source Remote Sensing Images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 297-303.

Chou, T. C., Zhu, X., & Reef, R. (2024). Pre-and post-fire forest canopy height mapping in Southeast Australia through the integration of multi-temporal GEDI data, satellite images, and Convolution Neural Network. International Journal of Remote Sensing, 45(10), 3310-3331.

Dadhwal, V. K., & Nandy, S. (2024). Forest Biomass Assessment Using Multisource Earth Observation Data: Techniques, Data Sets and Applications. Journal of the Indian Society of Remote Sensing, 1-7.

Frappart, F., Minh, D. H. T., Baghdadi, N., Crétaux, J. F., Fayad, I., & Bergé-Nguyen, M. (2024). Improving mean water lake surface elevation estimates using dense lidar measurements from the GEDI satellite mission. Remote Sensing Applications: Society and Environment, 101213.

Ji, M., Xie, H., Oberst, J., Xu, Q., Sun, Y., Liu, S., … & Tong, X. (2024). Deforestation detection from spaceborne full-waveform laser altimetry, incorporating terrain effects: A case study in Porto Velho, Brazil. International Journal of Applied Earth Observation and Geoinformation129, 103861.

Liu, X., Neigh, C. S., Pardini, M., & Forkel, M. (2024). Estimating forest height and above-ground biomass in tropical forests using P-band TomoSAR and GEDI observations. International Journal of Remote Sensing45(9), 3129-3148.

Islam, M. D., Di, L., Zhang, C., Yang, R., Qu, J., Tong, D., … & Pandey, A. (2024). A Decision Rule and Machine Learning-Based Hybrid Approach for Automated Land-Cover Type Local Climate Zones (LCZs) Mapping using Multi-Source Remote Sensing Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

Zhou, H., Wang, H., Song, H., Zhang, Q., Ma, Y., & Li, S. (2024). Canopy height extraction over mountainous areas from GEDI lidar deconvoluted waveforms. IEEE Geoscience and Remote Sensing Letters.

Tian, X., & Shan, J. (2024). ICESat-2 Controlled Integration of GEDI and SRTM Data for Large-Scale Digital Elevation Model Generation. IEEE Transactions on Geoscience and Remote Sensing.

Lin, S., Li, L., Liu, S., Gao, G., Zhao, X., Chen, L., … & Huang, H. (2024). Stratified burn severity assessment by integrating spaceborne spectral and waveform attributes in Great Xing’an Mountain. Remote Sensing of Environment, 307, 114152.

Sillett, S. C., Graham, M. E., Montague, J. P., Antoine, M. E., & Koch, G. W. (2024). Ground-based calibration for remote sensing of biomass in the tallest forests. Forest Ecology and Management561, 121879.

Swarada, B., Pasha, S. V., & Dadhwal, V. K. (2024). How natural are the forests in Rajiv Gandhi (Nagarhole) Tiger Reserve? A multi-source data approach. Environmental Monitoring and Assessment196(5), 1-17.

Alvites, C., O’Sullivan, H., Francini, S., Marchetti, M., Santopuoli, G., Chirici, G., … & Bazzato, E. (2024). High-Resolution Canopy Height Mapping: Integrating NASA’s Global Ecosystem Dynamics Investigation (GEDI) with Multi-Source Remote Sensing Data. Remote Sensing16(7), 1281.

Rodda, S. R., Fararoda, R., Gopalakrishnan, R., Jha, N., Réjou-Méchain, M., Couteron, P., … & Ploton, P. (2024). LiDAR-based reference aboveground biomass maps for tropical forests of South Asia and Central Africa. Scientific Data11(1), 334.

Yu, Q., Ryan, M. G., Ji, W., Prihodko, L., Anchang, J., Kahiu, N., … & Hanan, N. (2024). Assessing canopy height measurements from ICESat-2 and GEDI orbiting LiDAR across six different biomes with G-LiHT LiDAR. Environmental Research: Ecology.

Zhao, X., Hu, W., Han, J., Wei, W., & Xu, J. (2024). Urban Above-Ground Biomass Estimation Using GEDI Laser Data and Optical Remote Sensing Images. Remote Sensing16(7), 1229.

Kossieris, S., Tsiakos, V., Tsimiklis, G., & Amditis, A. (2024). Inland Water Level Monitoring from Satellite Observations: A Scoping Review of Current Advances and Future Opportunities. Remote Sensing16(7), 1181.

Zhao, Y., Du, S., Li, K., Jiang, J., Guo, Q., & Xiao, W. (2024). Estimation of canopy height based on multi-source remote sensing data using forest structure aided sample selection. International Journal of Remote Sensing45(7), 2235-2268.

Queinnec, M., Coops, N. C., & White, J. C. (2024). Characterizing post-fire northern boreal forest height dynamics. International Journal of Remote Sensing45(7), 2182-2207.

Jafarzadeh, H., Mahdianpari, M., Gill, E. W., & Mohammadimanesh, F. (2024). Enhancing Wetland Mapping: Integrating Sentinel-1/2, GEDI Data, and Google Earth EngineSensors24(5), 1651.

Pronk, M., Hooijer, A., Eilander, D., Haag, A., de Jong, T., Vousdoukas, M., … & Eleveld, M. (2024). DeltaDTM: A global coastal digital terrain model. Scientific Data, 11(1), 273.

Saatchi, S.S. & Favrichon, S. (2024). Global Vegetation Height Metrics from GEDI and ICESat2. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/2294

Solberg, S., Bollandsås, O. M., Gobakken, T., Næsset, E., Basak, P., & Duncanson, L. I. (2024). Biomass Change Estimated by TanDEM-X Interferometry and GEDI in a Tanzanian Forest. Remote Sensing, 16(5), 861.

Menounos, B., Gardner, A., Forentine, C., & Fountain, A. (2024). Brief communication: Recent estimates of glacier mass loss for western North America from laser altimetry. The Cryosphere, 18(2), 889-894.

Julzarika, A. (2024). Land surface dynamics and underwater topography from the latest DTM extraction to measure the Antarctica ice sheet thickness. Ocean and Polar Research, http://dx.doi.org/10.4217/OPR.2024002.

Zhu, W., Li, Y., Luan, K., Qiu, Z., He, N., Zhu, X., & Zou, Z. (2024). Forest Canopy Height Retrieval and Analysis Using Random Forest Model with Multi-Source Remote Sensing Integration. Sustainability16(5), 1735.

Wang, C., Zhang, W., Ji, Y., Marino, A., Li, C., Wang, L., … & Wang, M. (2024). Estimation of Aboveground Biomass for Different Forest Types Using Data from Sentinel-1, Sentinel-2, ALOS PALSAR-2, and GEDIForests15(1), 215.

Percival, J. E. H., Sato, H., Razanaparany, T. P., Rakotomamonjy, A. H., Razafiarison, Z. L., & Kitajima, K. (2024). Non fire-adapted dry forest of Northwestern Madagascar: Escalating and devastating trends revealed by Landsat timeseries and GEDI lidar data. Plos one19(2), e0290203.

Narin, O. G., Abdikan, S., Gullu, M., Lindenbergh, R., Balik Sanli, F., & Yilmaz, I. (2024). Improving global digital elevation models using space-borne GEDI and ICESat-2 LiDAR altimetry data. International Journal of Digital Earth17(1), 2316113.

Wang, B., Zhao, H., Wang, X., Lyu, G., Chen, K., Xu, J., … & Sheng, Q. (2024). Bamboo classification based on GEDI, time-series Sentinel-2 images and whale-optimized, dual-channel DenseNet: A case study in Zhejiang province, China. ISPRS Journal of Photogrammetry and Remote Sensing209, 312-323.

Gelabert, P.J., Rodrigues, M., Coll, L., Vega-Garcia, C., & Ameztegui, A. (2024). Maximum tree hight in European Mountains decreases above a climate-related elevation threshold. Communications Earth & Environment, 5, 84.

Seppi, S., López-Martínez, C., & Joseau, M. J. (2024). An Assessment of SAOCOM L-Band PolInSAR Capabilities For Canopy Height Estimation: A Case Study Over Managed Forests In Argentina. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

Brusse, T., Lenoir, J., Boisset, N., Spicher, F., Dubois, F., Caro, G., & Marrec, R. (2024). Mechanistically mapping near-surface temperature in the understory of temperate forests: A validation of the microclima R package against empirical observations. Agricultural and Forest Meteorology346, 109894.

Fayad, I., Ciais, P., Schwartz, M., Wigneron, J. P., Baghdadi, N., de Truchis, A., … & Bazzi, H. (2024). Hy-TeC: a hybrid vision transformer model for high-resolution and large-scale mapping of canopy height. Remote Sensing of Environment302, 113945.

Jia, D., Wang, C., Hakkenberg, C. R., Numata, I., Elmore, A. J., & Cochrane, M. A. (2024). Accuracy evaluation and effect factor analysis of GEDI aboveground biomass product for temperate forests in the conterminous United States. GIScience & Remote Sensing61(1), 2292374.

Marcus, M. S., Hergoualc’h, K., Coronado, E. N. H., & Gutiérrez-Vélez, V. H. (2024). Spatial distribution of degradation and deforestation of palm swamp peatlands and associated carbon emissions in the Peruvian Amazon. Journal of Environmental Management351, 119665.

Song, H., Zhou, H., Wang, H., Ma, Y., Zhang, Q., & Li, S. (2024). Retrieval of Tree Height Percentiles over Rugged Mountain Areas via Target Response Waveform of Satellite Lidar. Remote Sensing16(2), 425.

Stan, K. D., Sanchez-Azofeifa, A., & Hamann, H. F. (2024). Widespread degradation and limited protection of forests in global tropical dry ecosystems. Biological Conservation289, 110425.

Tolan, J., Yang, H. I., Nosarzewski, B., Couairon, G., Vo, H. V., Brandt, J., … & Couprie, C. (2024). Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar. Remote Sensing of Environment300, 113888.

Suab, S. A., Supe, H., Louw, A. S., Avtar, R., Korom, A., & Xinyu, C. (2024). Mapping of Temporally Dynamic Tropical Forest and Plantations Canopy Height in Borneo Utilizing TanDEM-X InSAR and Multi-sensor Remote Sensing Data. Journal of the Indian Society of Remote Sensing, 1-19.

Mohite, J., Sawant, S., Pandit, A., Sakkan, M., Pappula, S., & Parmar, A. (2024). Forest aboveground biomass estimation by GEDI and multi-source EO data fusion over Indian forest. International Journal of Remote Sensing45(4), 1304-1338.

Zhao, X., Chen, J. M., Zhang, Y., Jiao, Z., Liu, L., Qiu, F., … & Cao, R. (2024). Global mapping of forest clumping index based on GEDI canopy height and complementary data. ISPRS Journal of Photogrammetry and Remote Sensing209, 1-16.

Aragoneses, E., García, M., Ruiz-Benito, P., & Chuvieco, E. (2024). Mapping forest canopy fuel parameters at European scale using spaceborne LiDAR and satellite data. Remote Sensing of Environment303, 114005.

Bauer, L., Huth, A., Bogdanowski, A., Müller, M., Fischer, R. (2024). Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity. Remote Sensing. 16(3), 501.

Lu, D., & Jiang, X. (2024). A brief overview and perspective of using airborne Lidar data for forest biomass estimation. International Journal of Image and Data Fusion, 1-24.

Wang, C., Zhang, W., Ji, Y., Marino, A., Li, C., Wang, L., … & Wang, M. (2024). Estimation of Aboveground Biomass for Different Forest Types Using Data from Sentinel-1, Sentinel-2, ALOS PALSAR-2, and GEDI. Forests15(1), 215.

Chaparro, D., Jagdhuber, T., Piles, M., Jonard, F., Fluhrer, A., Vall-llossera, M., … & Entekhabi, D. (2024). Vegetation moisture estimation in the Western United States using radiometer-radar-lidar synergy. Remote Sensing of Environment303, 113993.

Pletcher, E., Smith-Tripp, S., Evans, D., & Schwartz, N. B. (2024). Evaluating global vegetation products for application in heterogeneous forest-savanna landscapes. International Journal of Remote Sensing45(2), 492-507.

Zhang, Q., Zhang, G., Zhang, Y., Xiao, X., You, N., Li, Z., … & Dong, J. (2024). Coupling GEDI LiDAR and Optical Satellite for Revealing Large‐Scale Maize Lodging in Northeast China. Earth’s Future12(1), e2023EF003590.

Peña-Arancibia, J. L., Ticehurst, C. J., Yu, Y., McVicar, T. R., & Marvanek, S. P. (2024). Feasibility of monitoring floodplain on-farm water storages by integrating airborne and satellite LiDAR altimetry with optical remote sensingRemote Sensing of Environment302, 113992.

Li, Z., Xuan, F., Dong, Y., Huang, X., Liu, H., Zeng, Y., … & Li, X. (2024). Performance of GEDI data combined with Sentinel-2 images for automatic labelling of wall-to-wall corn mappingInternational Journal of Applied Earth Observation and Geoinformation127, 103643.

Li, X., Li, L., Ni, W., Mu, X., Wu, X., Laurin, G. V., … & Huang, H. (2024). Validating GEDI tree canopy cover product across forest types using co-registered aerial LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 207, 326-337. 

2023
Doughty, C. E., Gaillard, C., Burns, P., Keany, J., Abraham, A., Malhi, Y. S., … & Tang, H. (2023). Tropical forests are mainly unstratified especially in Amazonia and regions with lower fertility or higher temperatures. Environmental Research: Ecology. Accepted Manuscript.

Bruening, J. M., May, P. B., Armston, J. D., & Dubayah, R. O. (2023) Precise and Unbiased Biomass Estimation From GEDI Data and the US Forest Inventory. Frontiers in Forests and Global Change, 6, 1149153.

Vogeler, J. C., Fekety, P. A., Elliott, L., Swayze, N. C., Filippelli, S. K., Barry, B., … & Vierling, K. T. (2023). Evaluating GEDI data fusions for continuous characterizations of forest wildlife habitat. Frontiers in Remote Sensing4, 1196554.

Cushman, K. C., Armston, J., Dubayah, R., Duncanson, L., Hancock, S., Janík, D., … & Kellner, J. R. (2023). Impact of leaf phenology on estimates of aboveground biomass density in a deciduous broadleaf forest from simulated GEDI lidar. Environmental Research Letters18(6), 065009.

Thomas, N., Urbazaev, M., Stovall, A. E., Hess, L., Armston, J., Neuenschwander, A., … & Duncanson, L. (2023). Seasonal flooding provides limitations and opportunities for ecosystem carbon accounting from space. Environmental Research Letters.

Bullock, E. L., Healey, S. P., Yang, Z., Acosta, R., Villalba, H., Insfrán, K. P., … & Dubayah, R. (2023). Estimating aboveground biomass density using hybrid statistical inference with GEDI lidar data and Paraguay’s national forest inventory. Environmental Research Letters.

Pascual, A., Guerra-Hernández, J., Armston, J., Minor, D. M., Duncanson, L. I., May, P. B., … & Dubayah, R. (2023). Assessing the performance of NASA’s GEDI L4A footprint aboveground biomass density models using National Forest Inventory and airborne laser scanning data in Mediterranean forest ecosystems. Forest Ecology and Management538, 120975.

Calders, K., Brede, B., Newnham, G., Culvenor, D., Armston, J., Bartholomeus, H. (2023). StrucNut: a global network for automated vegetation structure monitoring. Remote Sensing in Ecology and Conservation, https://doi.org/10.1002/rse2.333

Tang, H., Stoker, J., Luthcke, S., Armston, J., Lee, K., Blair, B., & Hofton, M. (2023). Evaluating and mitigating the impact of systematic geolocation error on canopy height measurement performance of GEDI. Remote Sensing of Environment291, 113571.

Ma, L., Hurtt, G., Tang, H., Lamb, R., Lister, A., Chini, L., … & Shen, Q. (2023). Spatial heterogeneity of global forest aboveground carbon stocks and fluxes constrained by spaceborne lidar data and mechanistic modelingGlobal Change Biology.

Choi, C., Cazcarra-Bes, V., Guliaev, R., Pardini, M., Papathanassiou, K. P., Qi, W., … & Dubayah, R. O. (2023). Large-Scale Forest Height Mapping by Combining TanDEM-X and GEDI Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing16, 2374-2385.

Duncanson, L., Liang, M., Leitold, V., Armston, J., Krishna Moorthy, S. M., Dubayah, R., … & Zvoleff, A. (2023). The effectiveness of global protected areas for climate change mitigation. Nature Communications14(1), 2908.

May, P., McConville, K. S., Moisen, G. G., Bruening, J., & Dubayah, R. (2023). A spatially varying model for small area estimates of biomass density across the contiguous United States. Remote Sensing of Environment, 286, 113420.

Liang, M., González-Roglich, M., Roehrdanz, P., Tabor, K., Zvoleff, A., Leitold, V., … & Duncanson, L. (2023). Assessing protected area’s carbon stocks and ecological structure at regional-scale using GEDI lidar. Global Environmental Change, 78, 102621.

Liang, M., Duncanson, L., Silva, J. A., & Sedano, F. (2023). Quantifying aboveground biomass dynamics from charcoal degradation in Mozambique using GEDI Lidar and Landsat. Remote Sensing of Environment284, 113367.

Li, X., Wessels, K., Armston, J., Hancock, S., Mathieu, R., Main, R., … & Scholes, R. (2023). First validation of GEDI canopy heights in African savannas. Remote Sensing of Environment285, 113402.

Lee, C., Lee, J., Kim, C., Chu, Y., & Lee, B. (2023). Prediction of Carbon Accumulation within Semi-Mangrove Ecosystems Using Remote Sensing and Artificial Intelligence Modeling in Jeju Island, South Korea. Ecology and Resilient Infrastructure, 10(4), 161-170.

Brodie, J. F., Mohd-Azlan, J., Chen, C., Wearn, O. R., Deith, M. C., Ball, J. G., … & Luskin, M. S. (2023). Landscape-scale benefits of protected areas for tropical biodiversity. Nature620(7975), 807-812.

Valencia, S., Salazar, J. F., Hoyos, N., Armenteras, D., & Villegas, J. C. (2023). Current Forest–Savanna Transition in Northern South America Departs from Typical Climatic ThresholdsEcosystems, 1-16.

Mathew, J. R., Singh, C. P., Solanki, H., Sedha, D., Pandya, M. R., & Bhattacharya, B. K. (2023). Role of LiDAR remote sensing in identifying physiognomic traits of alpine treeline: a global review. Tropical Ecology, 1-15.

Narin, O. G., & Gullu, M. (2023). A comparison of vertical accuracy of global DEMs and DEMs produced by GEDI, ICESat-2. Earth Science Informatics, 1-15.

Myroniuk, V., Zibtsev, S., Bogomolov, V., Goldammer, J. G., Soshenskyi, O., Levchenko, V., & Matsala, M. (2023). Combining Landsat time series and GEDI data for improved characterization of fuel types and canopy metrics in wildfire simulation. Journal of Environmental Management345, 118736.

Padalia, H., Prakash, A., & Watham, T. (2023). Modelling aboveground biomass of a multistage managed forest through synergistic use of Landsat-OLI, ALOS-2 L-band SAR and GEDI metrics. Ecological Informatics, 102234.

Schleich, A., Durrieu, S., & Vega, C. (2023). Improving GEDI Footprint Geolocation Using a High Resolution Digital Elevation Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

Wang, S., Liu, C., Li, W., Jia, S., & Yue, H. (2023). Hybrid model for estimating forest canopy heights using fused multimodal spaceborne LiDAR data and optical imagery. International Journal of Applied Earth Observation and Geoinformation122, 103431.

Jucker, T., Gosper, C. R., Wiehl, G., Yeoh, P. B., Raisbeck-Brown, N., Fischer, F. J., … & Prober, S. M. (2023). Using multi-platform LiDAR to guide the conservation of the world’s largest temperate woodland. Remote Sensing of Environment, 296, 113745.

Abbasi, A. O., Tang, X., Harris, N. L., Goldman, E. D., Gamarra, J. G., Herold, M., … & Liang, J. (2023). Spatial database of planted forests in East Asia. Scientific Data, 10(1), 480.

Huettermann, S., Jones, S., Soto-Berelov, M., & Hislop, S. (2023). Using Landsat time series and bi-temporal GEDI to compare spectral and structural vegetation responses after fire. International Journal of Applied Earth Observation and Geoinformation, 122, 103403.

Lin, X., Shang, R., Chen, J. M., Zhao, G., Zhang, X., Huang, Y., … & Jiao, W. (2023). High-resolution forest age mapping based on forest height maps derived from GEDI and ICESat-2 space-borne lidar data. Agricultural and Forest Meteorology, 339, 109592.

Crockett, E. T., Atkins, J. W., Guo, Q., Sun, G., Potter, K. M., Ollinger, S., … & Xiao, J. (2023). Structural and species diversity explain aboveground carbon storage in forests across the United States: Evidence from GEDI and forest inventory data. Remote Sensing of Environment, 295, 113703.

Schwartz, M., Ciais, P., De Truchis, A., Chave, J., Ottlé, C., Vega, C., … & Fayad, I. (2023). FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach. Earth System Science Data Discussions, 2023, 1-28.

Ziegler, A., Heisig, J., Ludwig, M., Reudenbach, C., Meyer, H., & Nauss, T. (2023). Using GEDI as training data for an ongoing mapping of landscape-scale dynamics of the plant area index. Environmental Research Letters.

Rodrigues, M., Coll, L., Vega-Garcia, C., Ameztegui, A., & Gelabert, P. (2023). On the relationship between maximum tree height, elevation and climate in European mountain ranges. Preprint.

Huang, Q., Xu, J., Wong, J. P., Radeloff, V. C., & Songer, M. (2023). Prioritizing global tall forests toward the 30‐by‐30 goal. Conservation Biology.

Landmann, T., Schmitt, M., Ekim, B., Villinger, J., Ashiono, F., Habel, J. C., & Tonnang, H. E. (2023). Insect diversity is a good indicator of biodiversity status in Africa. Communications Earth & Environment, 4(1), 234.

Barenblitt, A., Fatoyinbo, L., Thomas, N., Stovall, A., de Sousa, C., Nwobi, C., & Duncanson, L. (2023). Invasion in the Niger Delta: remote sensing of mangrove conversion to invasive Nypa fruticans from 2015 to 2020. Remote Sensing in Ecology and Conservation.

Alkama, R., Girardello, M., Ceccherini, G., Forzieri, G., Koffi, E. N., Roebroek, C., & Cescatti, A. (2023). Tree architecture modulates the trends in greenness and water content of European forest canopies. Preprint.

Kashongwe, H. B., Roy, D. P., & Skole, D. L. (2023). Examination of the amount of GEDI data required to characterize central Africa tropical forest aboveground biomass at REDD+ project scale in Mai Ndombe province. Science of Remote Sensing, 100091.

Wang, Y., Fang, H., Zhang, Y., Li, S., Pang, Y., Ma, T., & Li, Y. (2023). Retrieval and validation of vertical LAI profile derived from airborne and spaceborne LiDAR data at a deciduous needleleaf forest site. GIScience & Remote Sensing60(1), 2214987.

Cushman, K. C., Armston, J., Dubayah, R., Duncanson, L. I., Hancock, S., Janík, D., … & Kellner, J. R. (2023). Impact of leaf phenology on estimates of aboveground biomass density in a deciduous broadleaf forest from simulated Global Ecosystem Dynamics Investigation (GEDI) lidar. Environmental Research Letters. In press.

Purslow, M., Hancock, S., Neuenschwander, A., Armston, J., & Duncanson, L. (2023). Can ICESat-2 estimate stand-level plant structural traits? Validation of an ICESat-2 simulator. Science of Remote Sensing, 100086.

Fayad, I., Ciais, P., Schwartz, M., Wigneron, J. P., Baghdadi, N., de Truchis, A., … & Bazzi, H. (2023). Vision Transformers, a new approach for high-resolution and large-scale mapping of canopy heights. arXiv preprint arXiv:2304.11487.

Wang, X., Liu, X., Wu, Y., Chen, R., & Wang, S. (2023). Dynamic Assessment and Change Analysis of Ecosystem Service Value Based on Physical Assessment Method in Cili County, China. Forests14(5), 869.

Rodda, S. R., Nidamanuri, R. R., Fararoda, R., Mayamanikandan, T., & Rajashekar, G. (2023). Evaluation of Height Metrics and Above-Ground Biomass Density from GEDI and ICESat-2 Over Indian Tropical Dry Forests using Airborne LiDAR Data. Journal of the Indian Society of Remote Sensing, 1-16.

Xu, L., Shu, Q., Fu, H., Zhou, W., Luo, S., Gao, Y., … & Wang, S. (2023). Estimation of Quercus Biomass in Shangri-La Based on GEDI Spaceborne Lidar Data. Forests14(5), 876.

de Sousa, C., Fatoyinbo, L., Honzák, M., Wright, T. M., Murillo Sandoval, P. J., Whapoe, Z. E., … & Juhn, D. (2023). Two decades of land cover change and forest fragmentation in Liberia: Consequences for the contribution of nature to people. Conservation Science and Practice, e12933.

Killion, A. K., Honda, A., Trout, E., & Carter, N. H. (2023). Integrating spaceborne estimates of structural diversity of habitat into wildlife occupancy models. Environmental Research Letters

Wu, J., Ke, C. Q., Cai, Y., Nourani, V., Chen, J., & Duan, Z. (2023). GEDI: A New LiDAR Altimetry to Obtain the Water Levels of More Lakes on the Tibetan Plateau. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

Purkis, S. J., Ward, S. N., Fitzpatrick, N. M., Garvin, J. B., Slayback, D., Cronin, S. J., … & Dempsey, A. (2023). The 2022 Hunga-Tonga megatsunami: Near-field simulation of a once-in-a-century eventScience Advances9(15), eadf5493.

Shi, J., Zhang, W., Marino, A., Zeng, P., Ji, Y., Zhao, H., … & Wang, M. (2023). Forest total and component biomass retrieval via GA-SVR algorithm and quad-polarimetric SAR data. International Journal of Applied Earth Observation and Geoinformation118, 103275.

Wang, Y., Long, D., & Li, X. (2023). High-temporal-resolution monitoring of reservoir water storage of the Lancang-Mekong River. Remote Sensing of Environment292, 113575.

Kacic, P., Thonfeld, F., Gessner, U., & Kuenzer, C. (2023). Forest Structure Characterization in Germany: Novel Products and Analysis Based on GEDI, Sentinel-1 and Sentinel-2 Data. Remote Sensing15(8), 1969.

Torresani, M., Rocchini, D., Alberti, A., Moudrý, V., Heym, M., Thouverai, E., … & Tomelleri, E. (2023). LiDAR GEDI derived tree canopy height heterogeneity reveals patterns of biodiversity in forest ecosystems. Ecological Informatics, 102082.

Ceccherini, G., Girardello, M., Beck, P. S., Migliavacca, M., Duveiller, G., Dubois, G., … & Cescatti, A. (2023). Spaceborne LiDAR reveals the effectiveness of European Protected Areas in conserving forest height and vertical structure. Communications Earth & Environment, 4(1), 97.

Mandl, L., Stritih, A., Seidl, R., Ginzler, C., & Senf, C. (2023). Spaceborne LiDAR for characterizing forest structure across scales in the European Alps. Remote Sensing in Ecology and Conservation, n.p.

Oliveira, P. V., Zhang, X., Peterson, B., & Ometto, J. P. (2023). Using simulated GEDI waveforms to evaluate the effects of beam sensitivity and terrain slope on GEDI L2A relative height metrics over the Brazilian Amazon Forest. Science of Remote Sensing, 100083.

Kumari, K. & Kumar, S. (2023). Machine Learning Based Modeling for Forest Aboveground Biomass Retrieval. 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS), Hyderabad, India, 2023, pp. 1-4

Rajab Pourrahmati, M., Baghdadi, N., & Fayad, I. (2023). Comparison of GEDI LiDAR Data Capability for Forest Canopy Height Estimation over Broadleaf and Needleleaf Forests. Remote Sensing15(6), 1522.

Wang, C., Jia, D., Lei, S., Numata, I., & Tian, L. (2023). Accuracy Assessment and Impact Factor Analysis of GEDI Leaf Area Index Product in Temperate Forest. Remote Sensing15(6), 1535.

Knott, J. A., Liknes, G. C., Giebink, C. L., Oh, S., Domke, G. M., McRoberts, R. E., … & Walters, B. F. (2023). Effects of outliers on remote sensing‐assisted forest biomass estimation: A case study from the United States national forest inventory. Methods in Ecology and Evolution.

Jiao, Y., Wang, D., Yao, X., Wang, S., Chi, T., & Meng, Y. (2023). Forest Emissions Reduction Assessment Using Optical Satellite Imagery and Space LiDAR Fusion for Carbon Stock Estimation. Remote Sensing15(5), 1410.

Mathew, J. R., Singh, C. P., Solanki, H., Mohapatra, J., Nautiyal, M. C., Semwal, S. C., … & Bhattacharya, B. K. (2023). Improvement in the delineation of alpine treeline in Uttarakhand using spaceborne light detection and ranging data. Journal of Applied Remote Sensing17(2), 022207.

Ilangakoon, N. T., Balch, J. K., Nagy, R. C., & Iglesias, V. (2023). Postfire recovery of western US conifer forests (1984-2017) using space-borne lidar data. bioRxiv, 2023-02. Preprint.

Luo, Y., Qi, S., Liao, K., Zhang, S., Hu, B., & Tian, Y. (2023). Mapping the Forest Height by Fusion of ICESat-2 and Multi-Source Remote Sensing Imagery and Topographic Information: A Case Study in Jiangxi Province, China. Forests14(3), 454.

Mathew, J. R., Singh, C. P., Mohapatra, J., Agrawal, R., Solanki, H., Khuroo, A. A., … & Verma, A. (2023). Quantifying Variation in Canopy Height from LiDAR Data as a Function of Altitude Along Alpine Treeline Ecotone in Indian Himalaya. In Ecology of Himalayan Treeline Ecotone (pp. 191-203). Singapore: Springer Nature Singapore.

Liu, S., Brandt, M., Nord-Larsen, T., Chave, J., Reiner, F., Lang, N., … & Fensholt, R. (2023). The overlooked contribution of trees outside forests to tree cover and woody biomass across EuropePreprint.

Ngo, Y. N., Ho Tong Minh, D., Baghdadi, N., & Fayad, I. (2023). Tropical Forest Top Height by GEDI: From Sparse Coverage to Continuous Data. Remote Sensing, 15(4), 975.

Pasha, S. V., Dadhwal, V. K., & Reddy, C. S. (2023). Rubber expansion and age-class mapping in the state of Tripura (India) 1990–2021 using multi-year and multi-sensor data. Environmental Monitoring and Assessment, 195(2), 1-14.

Pfeifer, M., Sallu, S. M., Marshall, A. R., Rushton, S., Moore, E., Shirima, D. D., … & Guerreiro-Milheiras, S. (2023). A systems approach framework for evaluating tree restoration interventions for social and ecological outcomes in rural tropical landscapes. Philosophical Transactions of the Royal Society B378(1867), 20210111.

Schleich, A., Durrieu, S., Soma, M., & Vega, C. (2023). Improving GEDI Footprint Geolocation using a High Resolution Digital Terrain Model. PrePrint.

Raj, A., & Sharma, L. K. (2023). Spatial E-PSR modelling for ecological sensitivity assessment for arid rangeland resilience and management. Ecological Modelling478, 110283.

Xu, Y., Ding, S., Chen, P., Tang, H., Ren, H., & Huang, H. (2023). Horizontal Geolocation Error Evaluation and Correction on Full-Waveform LiDAR Footprints via Waveform Matching. Remote Sensing, 15(3), 776.

Stritih, A., Seidl, R., & Senf, C. (2023). Alternative states in the structure of mountain forests across the Alps and the role of disturbance and recoveryLandscape Ecology.

Hirschmugl, M., Lippl, F., & Sobe, C. (2023). Assessing the Vertical Structure of Forests Using Airborne and Spaceborne LiDAR Data in the Austrian Alps. Remote Sensing15(3), 664.

Li, W., Guo, W. Y., Pasgaard, M., Niu, Z., Wang, L., Chen, F., … & Svenning, J. C. (2023). Human fingerprint on structural density of forests globally. Nature Sustainability, 1-12.

Dalagnol, R., Galvão, L. S., Wagner, F. H., de Moura, Y. M., Gonçalves, N., Wang, Y., … & Aragão, L. E. O. C. (2023). AnisoVeg: anisotropy and nadir-normalized MODIS multi-angle implementation atmospheric correction (MAIAC) datasets for satellite vegetation studies in South America. Earth System Science Data15(1), 345-358.

Zhou, X., Hao, Y., Di, L., Wang, X., Chen, C., Chen, Y., … & Jancso, T. (2023). Improving GEDI Forest Canopy Height Products by Considering the Stand Age Factor Derived from Time-Series Remote Sensing Images: A Case Study in Fujian, ChinaRemote Sensing15(2), 467.

Li, X., Wessels, K., Armston, J., Hancock, S., Mathieu, R., Main, R., … & Scholes, R. (2023). First validation of GEDI canopy heights in African savannas. Remote Sensing of Environment285, 113402.

Dwiputra, A., Coops, N., & Schwartz, N. (2023). GEDI waveform metrics in vegetation mapping—a case study from a heterogeneous tropical forest landscape. Environmental Research Letters, 18(1), 015007.

Geremew, T., Gonsamo, A., Zewdie, W., & Pellikka, P. (2023). Extrapolation of canopy height and cover metrics of GEDI LiDAR in tropical montane forest ecosystemAfrican Geographical Review, 1-17.

Hoffrén, R., Lamelas, M. T., de la Riva, J., Domingo, D., Montealegre, A. L., García-Martín, A., & Revilla, S. (2023). Assessing GEDI-NASA system for forest fuels classification using machine learning techniques. International Journal of Applied Earth Observation and Geoinformation116, 103175.

Ren, C., Jiang, H., Xi, Y., Liu, P., & Li, H. (2023). Quantifying Temperate Forest Diversity by Integrating GEDI LiDAR and Multi-Temporal Sentinel-2 Imagery. Remote Sensing15(2), 375.

Zhang, Z., Bo, Y., Jin, S., Chen, G., & Dong, Z. (2023). Dynamic water level changes in Qinghai Lake from integrating refined ICESat-2 and GEDI altimetry data (2018-2021). Journal of Hydrology, 129007.

Cobb, A. R., Dommain, R., Sukri, R. S., Metali, F., Bookhagen, B., Harvey, C. F., & Tang, H. (2023). Improved terrain estimation from spaceborne lidar in tropical peatlands using spatial filtering. Science of Remote Sensing, 100074.

Vernimmen, R., & Hooijer, A. (2023). New LiDAR Based Elevation Model Shows Greatest Increase in Global Coastal Exposure to Flooding to Be Caused by Early Stage Sea Level Rise. Earth’s Future, 11(1), e2022EF002880.

Silveira, E. M., Radeloff, V. C., Martinuzzi, S., Pastur, G. J. M., Bono, J., Politi, N., … & Pidgeon, A. M. (2023). Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery. Remote Sensing of Environment285, 113391.

Musthafa, M., Singh, G., & Kumar, P. (2023). Comparison of forest stand height interpolation of GEDI and ICESat-2 LiDAR measurements over tropical and sub-tropical forests in India. Environmental Monitoring and Assessment, 195(1), 1-17.

Ma, X., Zheng, G., Chi, X., Yang, L., Geng, Q., Li, J., & Qiao, Y. (2023). Mapping fine-scale building heights in urban agglomeration with spaceborne lidar. Remote Sensing of Environment, 285, 113392.

2022

Pillay, R., Watson, J. E., Hansen, A. J., Jantz, P. A., Aragon-Osejo, J., Armenteras, D., … & Venter, O. (2022). Humid tropical vertebrates are at lower risk of extinction and population decline in forests with higher structural integrity. Nature Ecology & Evolution, 1-10.

Goetz, S., Dubayah, R., & Duncanson, L. (2022). Revisiting the status of forest carbon stock changes in the context of the measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradationEnvironmental Research Letters.

Dubayah, R., Armston, J., Healey, S. P., Bruening, J. M., Patterson, P. L., Kellner, J. R., … & Luthcke, S. (2022). GEDI launches a new era of biomass inference from space. Environmental Research Letters. 17, 095001.

Ni-Meister, W., Rojas, A., & Lee, S. (2022). Direct use of large-footprint lidar waveforms to estimate aboveground biomass. Remote Sensing of Environment, 280, 113147.

Pascual, A., Tupinambá-Simões, F., & de Conto, T. (2022). Using multi-temporal tree inventory data in eucalypt forestry to benchmark global high-resolution canopy height models. A showcase in Mato Grosso, Brazil. Ecological Informatics, 101748.

Duncanson, L., Kellner, J. R., Armston, J., Dubayah, R., Minor, D. M., Hancock, S., … & Zgraggen, C. (2022). Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar missionRemote Sensing of Environment270, 112845.

Hansen, J. N., Hancock, S., Prade, L., Bonner, G. M., Chen, H., Davenport, I., … & Purslow, M. (2022). Assessing Novel Lidar Modalities for Maximizing Coverage of a Spaceborne System through the Use of Diode LasersRemote Sensing14(10), 2426.

Lang, N., Kalischek, N., Armston, J., Schindler, K., Dubayah, R., & Wegner, J. D. (2022). Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles. Remote Sensing of Environment, 268, 112760.

Ma, L., Hurtt, G., Ott, L., Sahajpal, R., Fisk, J., Lamb, R., … & Sullivan, J. (2022). Global evaluation of the Ecosystem Demography model (ED v3. 0)Geoscientific Model Development15(5), 1971-1994.

Marselis, S. M., Keil, P., Chase, J. M., & Dubayah, R. (2022). The use of GEDI canopy structure for explaining variation in tree species richness in natural forests. Environmental Research Letters17(4), 045003.

Milenković, M., Reiche, J., Armston, J., Neuenschwander, A., De Keersmaecker, W., Herold, M., & Verbesselt, J. (2022). Assessing amazon rainforest regrowth with GEDI and ICESat-2 data. Science of Remote Sensing, 100051.

Saarela, S., Holm, S., Healey, S. P., Patterson, P. L., Yang, Z., Andersen, H. E., … & Ståhl, G. (2022). Comparing frameworks for biomass prediction for the Global Ecosystem Dynamics Investigation. Remote Sensing of Environment278, 113074.

Lahssini, K., Baghdadi, N., Le Maire, G., & Fayad, I. (2022). Influence of GEDI Acquisition and Processing Parameters on Canopy Height Estimates over Tropical Forests. Remote Sensing14(24), 6264.

Geremew, T., Zewdie, W., & Pellikka, P. (2022). Ecosystem extent mapping by integrating Landsat 8, PALSAR-2, and GEDI lidar. Applied Geomatics, 1-16.

Vatandaslar, C., Narin, O. G., & Abdikan, S. (2022). Retrieval of forest height information using spaceborne LiDAR data: a comparison of GEDI and ICESat-2 missions for Crimean pine (Pinus nigra) stands. Trees, 1-15.

Kanmegne Tamga, D., Latifi, H., Ullmann, T., Baumhauer, R., Bayala, J., & Thiel, M. (2022). Estimation of Aboveground Biomass in Agroforestry Systems over Three Climatic Regions in West Africa Using Sentinel-1, Sentinel-2, ALOS, and GEDI Data. Sensors, 23(1), 349.

Vangi, E., D’Amico, G., Francini, S., & Chirici, G. (2022). GEDI4R: an R package for NASA’s GEDI level 4 A data downloading, processing and visualizationEarth Science Informatics, 1-9.

Atmani, F., Bookhagen, B., & Smith, T. (2022). Measuring Vegetation Heights and Their Seasonal Changes in the Western Namibian Savanna Using Spaceborne Lidars. Remote Sensing14(12), 2928.

Ma, X., Zheng, G., Chi, X., Yang, L., Geng, Q., Li, J., & Qiao, Y. (2023). Mapping fine-scale building heights in urban agglomeration with spaceborne lidar. Remote Sensing of Environment, 285, 113392.

Xi, Y., Tian, Q., Zhang, W., Zhang, Z., Tong, X., Brandt, M., & Fensholt, R. (2022). Quantifying understory vegetation density using multi-temporal Sentinel-2 and GEDI LiDAR data. GIScience & Remote Sensing59(1), 2068-2083.

Shendryk, Y. (2022). Fusing GEDI with earth observation data for large area aboveground biomass mappingInternational Journal of Applied Earth Observation and Geoinformation115, 103108.

Zhang, S., Vega, C., Deleuze, C., Durrieu, S., Barbillon, P., Bouriaud, O., & Renaud, J. P. (2022). Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary informationInternational Journal of Applied Earth Observation and Geoinformation114, 103072.

Labrière, N., Davies, S. J., Disney, M. I., Duncanson, L. I., Herold, M., Lewis, S. L., … & Chave, J. (2022). Toward a forest biomass reference measurement system for remote sensing applications. Global Change Biology.

Sun, M., Cui, L., Park, J., García, M., Zhou, Y., Silva, C. A., … & Zhao, K. (2022). Evaluation of NASA’s GEDI Lidar Observations for Estimating Biomass in Temperate and Tropical Forests. Forests13(10), 1686.

Shannon, E. S., Finley, A. O., Hayes, D. J., Noralez, S. N., Weiskittel, A. R., Cook, B. D., & Babcock, C. (2022). Quantifying and correcting geolocation error in sampling LiDAR forest canopy observations using high spatial accuracy ALS: A case study involving GEDI. arXiv preprint arXiv:2209.11797.

Urbazaev, M., Hess, L. L., Hancock, S., Sato, L. Y., Ometto, J. P., Thiel, C., … & Schmullius, C. (2022). Assessment of terrain elevation estimates from ICESat-2 and GEDI spaceborne LiDAR missions across different land cover and forest typesScience of Remote Sensing, 100067.

Zhu, X., Nie, S., Wang, C., Xi, X., Lao, J., & Li, D. (2022). Consistency analysis of forest height retrievals between GEDI and ICESat-2. Remote Sensing of Environment281, 113244.

Francini, S., D’Amico, G., Vangi, E., Borghi, C., & Chirici, G. (2022). Integrating GEDI and Landsat: spaceborne lidar and four decades of optical imagery for the analysis of forest disturbances and biomass changes in Italy. Sensors22(5), 2015.

Gupta, R., & Sharma, L. K. (2022). Mixed tropical forests canopy height mapping from spaceborne LiDAR GEDI and multisensor imagery using machine learning models. Remote Sensing Applications: Society and Environment, 100817.

Wang, C., Elmore, A. J., Numata, I., Cochrane, M. A., Lei, S., Hakkenberg, C. R., … & Tian, Y. (2022). A Framework for Improving Wall-to-Wall Canopy Height Mapping by Integrating GEDI LiDAR. Remote Sensing14(15), 3618.

Campbell, M. J., Dennison, P. E., Thompson, M. P., & Butler, B. W. (2022). Assessing potential safety zone suitability using a new online mapping tool. Fire5(1), 5.

Chen, L., Ren, C., Bao, G., Zhang, B., Wang, Z., Liu, M., … & Liu, J. (2022). Improved Object-Based Estimation of Forest Aboveground Biomass by Integrating LiDAR Data from GEDI and ICESat-2 with Multi-Sensor Images in a Heterogeneous Mountainous Region. Remote Sensing14(12), 2743.

Fayad, I., Baghdadi, N., & Frappart, F. (2022). Comparative Analysis of GEDI’s Elevation Accuracy from the First and Second Data Product Releases over Inland Waterbodies. Remote Sensing14(2), 340.

Fayad, I., Baghdadi, N., Bailly, J. S., Frappart, F., & Pantaleoni Reluy, N. (2022). Correcting GEDI Water Level Estimates for Inland Waterbodies Using Machine Learning. Remote Sensing14(10), 2361.

Fayad, I., Baghdadi, N., & Lahssini, K. (2022). An Assessment of the GEDI Lasers’ Capabilities in Detecting Canopy Tops and Their Penetration in a Densely Vegetated, Tropical Area. Remote Sensing14(13), 2969.

Francini, S., D’Amico, G., Vangi, E., Borghi, C., & Chirici, G. (2022) Integrating GEDI and Landsat: Spaceborne Lidar and Four Decades of Optical Imagery for the Analysis of Forest Disturbances and Biomass Changes in ItalySensors, 22(5), 2015.

Huang, W., Min, W., Ding, J., Liu, Y., Hu, Y., Ni, W., & Shen, H. (2022). Forest height mapping using inventory and multi-source satellite data over Hunan Province in southern ChinaForest Ecosystems9, 100006.

Huettermann, S., Jones, S., Soto-Berelov, M., & Hislop, S. (2022). Intercomparison of Real and Simulated GEDI Observations across Sclerophyll Forests. Remote Sensing, 14(9), 2096. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs14092096

Jin, H., & Mountrakis, G. (2022). Fusion of optical, radar and waveform LiDAR observations for land cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 187, 171-190.

Lang, N. (2022). Mapping vegetation height — probabilistic deep learning for global remote sensing [Doctoral thesis, ETH Zurich]. ETH Zurich. https://doi.org/10.3929/ethz-b-000554994

Leite, R. V., Silva, C. A., Broadbent, E. N., Do Amaral, C. H., Liesenberg, V., De Almeida, D. R. A., … & Klauberg, C. (2022). Large scale multi-layer fuel load characterization in tropical savanna using GEDI spaceborne lidar data. Remote Sensing of Environment268, 112764.

Liu, X., Su, Y., Hu, T., Yang, Q., Liu, B., Deng, Y., … & Guo, Q. (2022). Neural network guided interpolation for mapping canopy height of China’s forests by integrating GEDI and ICESat-2 dataRemote Sensing of Environment269, 112844.

Maeda, E. E., Nunes, M. H., Calders, K., De Moura, Y. M., Raumonen, P., Tuomisto, H., … & Camargo, J. L. (2022). Shifts in structural diversity of Amazonian forest edges detected using terrestrial laser scanning. Remote Sensing of Environment271, 112895.

Miller, B. D. (2022). Diameter Estimation of Eucalyptus spp. Plantations in Southern Brazil Using Global Ecosystem Dynamics Investigation Data and Support Vector Regression (Doctoral dissertation, Virginia Tech).

Mondal, P., Dutta, T., Qadir, A., & Sharma, S. (2022). Radar and optical remote sensing for near real‐time assessments of cyclone impacts on coastal ecosystems. Remote Sensing in Ecology and Conservation.

Morin, D., Planells, M., Baghdadi, N., Bouvet, A., Fayad, I., Le Toan, T., … & Villard, L. (2022). Improving Heterogeneous Forest Height Maps by Integrating GEDI-Based Forest Height Information in a Multi-Sensor Mapping Process. Remote Sensing14(9), 2079.

Musthafa, M., & Singh, G. (2022). Forest above-ground woody biomass estimation using multi-temporal space-borne LiDAR data in a managed forest at Haldwani, India. Advances in Space Research.

Musthafa, M., & Singh, G. (2022). Improving Forest Above-Ground Biomass Retrieval Using Multi-Sensor L-and C-Band SAR Data and Multi-Temporal Spaceborne LiDAR Data. Front. For. Glob. Change5, 822704.

Pereira-Pires, J. E., Aubard, V., Baldassarre, G., Fonseca, J. M., Silva, J., & Mora, A. (2021, November). Fuel Break Monitoring with Sentinel-2 Imagery and GEDI Validation. In IFIP International Internet of Things Conference (pp. 67-85). Springer, Cham.

Pötzschner, F., Baumann, M., Gasparri, N. I., Conti, G., Loto, D., Piquer-Rodríguez, M., & Kuemmerle, T. (2022). Ecoregion-wide, multi-sensor biomass mapping highlights a major underestimation of dry forests carbon stocks. Remote Sensing of Environment269, 112849.

Pötzschner, F., Baumann, M., Gasparri, N. I., Conti, G., Loto, D., Piquer-Rodríguez, M., & Kuemmerle, T. (2022). Ecoregion-wide, multi-sensor biomass mapping highlights a major underestimation of dry forests carbon stocks. Remote Sensing of Environment269, 112849.

Rishmawi, K., Huang, C., Schleeweis, K., & Zhan, X. (2022). Integration of VIIRS Observations with GEDI-Lidar Measurements to Monitor Forest Structure Dynamics from 2013 to 2020 across the Conterminous United States. Remote Sensing14(10), 2320.

Smith, A. B., Vogeler, J. C., Bjornlie, N. L., Squires, J. R., Swayze, N. C., & Holbrook, J. D. (2022). Spaceborne LiDAR and animal-environment relationships: An assessment for forest carnivores and their prey in the Greater Yellowstone Ecosystem. Forest Ecology and Management520, 120343.

Wang, C., Elmore, A. J., Numata, I., Cochrane, M. A., Shaogang, L., Huang, J., … & Li, Y. (2022). Factors affecting relative height and ground elevation estimations of GEDI among forest types across the conterminous USA. GIScience & Remote Sensing59(1), 975-999.

Xi, Z., Xu, H., Xing, Y., Gong, W., Chen, G., & Yang, S. (2022). Forest Canopy Height Mapping by Synergizing ICESat-2, Sentinel-1, Sentinel-2 and Topographic Information Based on Machine Learning Methods. Remote Sensing14(2), 364.

Xu, P., Tsendbazar, N. E., Herold, M., Clevers, J. G., & Li, L. (2022). Improving the characterization of global aquatic land cover types using multi-source earth observation data. Remote Sensing of Environment278, 113103.

Zhang, Q., Ge, L., Hensley, S., Metternicht, G. I., Liu, C., & Zhang, R. (2022). PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing186, 123-139.

Zhu, T., Zhou, H., Ma, Y., Li, S., & Chen, Y. (2022). A Synthetic Algorithm on the Skew-Normal Decomposition for Satellite LiDAR Waveforms. IEEE Transactions on Geoscience and Remote Sensing60, 1-15.

Huang, W., Min, W., Ding, J., Liu, Y., Hu, Y., Ni, W., & Shen, H. (2022). Forest height mapping using inventory and multi-source satellite data over Hunan Province in southern China. Forest Ecosystems9, 100006.

Killisly, C., Dubucq, D., & Credoz, A. (2022). Biomass Quantification in Forest: a Review and Use Case with Gedi Lidar Data. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 5766-5768). IEEE.

DeLancey, E. R., Czekajlo, A., Boychuk, L., Gregory, F., Amani, M., Brisco, B., … & Hird, J. N. (2022). Creating a Detailed Wetland Inventory with Sentinel-2 Time-Series Data and Google Earth Engine in the Prairie Pothole Region of Canada. Remote Sensing14(14), 3401.

Foderi, C., Pecchi, M., Frassinelli, N., Marra, E., Chirici, G., & Marchi, E. (2022). Forest Fuel Loads Characterization: A Geostatistical Approach Investigated during the MED-Star Project. Environmental Sciences Proceedings17(1), 44.

Alvites, C., Marchetti, M., Lasserre, B., & Santopuoli, G. (2022). LiDAR as a Tool for Assessing Timber Assortments: A Systematic Literature Review. Remote Sensing14(18), 4466.

Sothe, C., Gonsamo, A., Lourenço, R. B., Kurz, W. A., & Snider, J. (2022). Spatially Continuous Mapping of Forest Canopy Height in Canada by Combining GEDI and ICESat-2 with PALSAR and Sentinel. Remote Sensing14(20), 5158.

Raj, A., & Baker, A. C. (2022). Comparing Computer Resource Usage Through Interpolating Global Ecosystem Dynamics Investigation Light Detection and Ranging Waveform Data. In 2022 International Conference for Advancement in Technology (ICONAT) (pp. 1-6). IEEE.

2021

Bruening, J. M., Fischer, R., Bohn, F. J., Armston, J., Armstrong, A. H., Knapp, N., … & Dubayah, R. (2021). Challenges to aboveground biomass prediction from waveform lidar. Environmental Research Letters, 16(12), 125013.

Dubayah, R. O., Luthcke, S. B., Sabaka, T. J., Nicholas, J. B., Preaux, S., & Hofton, M. A. (2021). GEDI L3 gridded land surface metrics, version 1. ORNL DAAC.

Dubayah, R. O., Armston, J., Kellner, J. R., Duncanson, L., Healey, S. P., Patterson, P. L., … & Luthcke, S. B. (2022). GEDI L4A Footprint Level Aboveground Biomass Density, Version 1. ORNL DAAC, Oak Ridge, Tennessee, USA. [newer version available here]

Duncanson, L., Neuenschwander, A., Silva, C. A., Montesano, P., Guenther, E., Thomas, N., … & Armston, J. (2021, July). Forest Aboveground Biomass Estimation with GEDI and ICESat-2 in Boreal Forests. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 670-672). IEEE.

Fatoyinbo, T., Armston, J., Simard, M., Saatchi, S., Denbina, M., Lavalle, M., … & Hibbard, K. (2021). The NASA AfriSAR campaign: Airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions. Remote Sensing of Environment, 264, 112533.

Hancock, S., McGrath, C., Lowe, C., Davenport, I., & Woodhouse, I. (2021). Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage. Royal Society open science, 8(12), 211166.

Ilangakoon, N., Glenn, N. F., Schneider, F. D., Dashti, H., Hancock, S., Spaete, L., & Goulden, T. (2021). Airborne and Spaceborne Lidar Reveal Trends and Patterns of Functional Diversity in a Semi-Arid Ecosystem. Frontiers in Remote Sensing2.

Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M. C., Kommareddy, A., … & Armston, J. (2021). Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment, 112165.

Roy, D. P., Kashongwe, H. B., & Armston, J. (2021). The impact of geolocation uncertainty on GEDI tropical forest canopy height estimation and change monitoring. Science of Remote Sensing, 4, 100024.

Silva, C. A., Duncanson, L., Hancock, S., Neuenschwander, A., Thomas, N., Hofton, M., … & Dubayah, R. (2021). Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sensing of Environment253, 112234.

Stovall, A. E., Fatoyinbo, T., Thomas, N. M., Armston, J., Ebanega, M. O., Simard, M., … & Essono, C. Z. (2021). Comprehensive comparison of airborne and spaceborne SAR and LiDAR estimates of forest structure in the tallest mangrove forest on earth. Science of Remote Sensing, 4, 100034.

Adrah, E., Jaafar, W. W. M., Bajaj, S., Omar, H., Leite, R. V., Silva, C. A., … & Mohan, M. (2021, October). Analyzing canopy height variations in secondary tropical forests of Malaysia using NASA GEDI. In IOP Conference Series: Earth and Environmental Science (Vol. 880, No. 1, p. 012031). IOP Publishing.

Atmani, F., Bookhagen, B., & Smith, T. (2022). Measuring Vegetation Heights and Their Seasonal Changes in the Western Namibian Savanna Using Spaceborne Lidars. Remote Sensing14(12), 2928.

Bauer, L., Knapp, N., & Fischer, R. (2021). Mapping Amazon Forest Productivity by Fusing GEDI Lidar Waveforms with an Individual-Based Forest Model. Remote Sensing13(22), 4540.

Borlaf-Mena, I., Badea, O., & Tanase, M. A. (2021). Assessing the Utility of Sentinel-1 Coherence Time Series for Temperate and Tropical Forest Mapping. Remote Sensing13(23), 4814.

Campbell, M. J., Dennison, P. E., Kerr, K. L., Brewer, S. C., & Anderegg, W. R. (2021). Scaled biomass estimation in woodland ecosystems: Testing the individual and combined capacities of satellite multispectral and lidar data. Remote Sensing of Environment262, 112511.

Chen, L., Ren, C., Zhang, B., Wang, Z., Liu, M., Man, W., & Liu, J. (2021). Improved estimation of forest stand volume by the integration of GEDI LiDAR data and multi-sensor imagery in the Changbai Mountains Mixed forests Ecoregion (CMMFE), northeast China. International Journal of Applied Earth Observation and Geoinformation100, 102326.

Chen, H., Cloude, S. R., & White, J. C. (2021). Using GEDI Waveforms for improved TanDEM-X forest height mapping: A combined SINC+ Legendre approach. Remote Sensing13(15), 2882.

DiMiceli, C., Townshend, J., Carroll, M., & Sohlberg, R. (2021). Evolution of the representation of global vegetation by vegetation continuous fields. Remote Sensing of Environment254, 112271.

Di Tommaso, S., Wang, S., & Lobell, D. B. (2021). Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops. Environmental Research Letters16(12), 125002.

Dorado-Roda, I., Pascual, A., Godinho, S., Silva, C. A., Botequim, B., Rodríguez-Gonzálvez, P., … & Guerra-Hernández, J. (2021). Assessing the accuracy of GEDI data for canopy height and aboveground biomass estimates in Mediterranean forestsRemote Sensing13(12), 2279.

Fayad, I., Baghdadi, N., & Riédi, J. (2021). Quality assessment of acquired GEDI waveforms: Case study over France, Tunisia and French Guiana. Remote Sensing13(16), 3144.

Fayad, I., Baghdadi, N., Alcarde Alvares, C., Stape, J. L., Bailly, J. S., Scolforo, H. F., … & Le Maire, G. (2021). Terrain slope effect on forest height and wood volume estimation from GEDI data. Remote Sensing13(11), 2136.

Fayad, I., Ienco, D., Baghdadi, N., Gaetano, R., Alvares, C. A., Stape, J. L., … & Le Maire, G. (2021). A CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms. Remote Sensing of Environment265, 112652.

Fayad, I., Baghdadi, N., Alcarde, C., Stape, J. L., Bailly, J. S., Scolforo, H., … & Le Maire, G. (2021). Assessment of GEDI’s LiDAR Data for the Estimation of Canopy Heights and Wood Volume of Eucalyptus plantations in BrazilIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

Frappart, F., Blarel, F., Fayad, I., Bergé-Nguyen, M., Crétaux, J. F., Shu, S., … & Baghdadi, N. (2021). Evaluation of the Performances of Radar and Lidar Altimetry Missions for Water Level Retrievals in Mountainous Environment: The Case of the Swiss Lakes. Remote Sensing13(11), 2196.

Guerra-Hernández, J., & Pascual, A. (2021). Using GEDI lidar data and airborne laser scanning to assess height growth dynamics in fast-growing species: a showcase in Spain. Forest Ecosystems8(1), 1-17.

Kacic, P., Hirner, A., & Da Ponte, E. (2021). Fusing Sentinel-1 and-2 to Model GEDI-Derived Vegetation Structure Characteristics in GEE for the Paraguayan Chaco. Remote Sensing13(24), 5105.

Khati, U., Lavalle, M., & Singh, G. (2021). The Role of Time-Series L-Band SAR and GEDI in Mapping Sub-Tropical Above-Ground Biomass. Front. Earth Sci9, 752254.

Knapp, N., Huth, A., & Fischer, R. (2021). Tree crowns cause border effects in area-based biomass estimations from remote sensing. Remote Sensing13(8), 1592.

Kokalj, Ž., & Mast, J. (2021). Space lidar for archaeology? Reanalyzing GEDI data for detection of ancient Maya buildings. Journal of Archaeological Science: Reports36, 102811.

Liu, A., Cheng, X., & Chen, Z. (2021). Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals. Remote Sensing of Environment, 264, 112571.

Ni, W., Zhang, Z., & Sun, G. (2021). Assessment of Slope-Adaptive Metrics of GEDI Waveforms for Estimations of Forest Aboveground Biomass over Mountainous Areas. Journal of Remote Sensing2021.

Pereira-Pires, J. E., Mora, A., Aubard, V., Silva, J., & Fonseca, J. M. (2021, July). Assessment of Sentinel-2 Spectral Features to Estimate Forest Height with the New GEDI Data. In Doctoral Conference on Computing, Electrical and Industrial Systems (pp. 123-131). Springer, Cham.

Quirós, E., Polo, M. E., & Fragoso-Campón, L. (2021). GEDI elevation accuracy assessment: a case study of southwest Spain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing14, 5285-5299.

Rishmawi, K., Huang, C., & Zhan, X. (2021). Monitoring Key Forest Structure Attributes across the Conterminous United States by Integrating GEDI LiDAR Measurements and VIIRS Data. Remote Sensing13(3), 442.

Salas, E. A. L. (2021). Waveform LiDAR concepts and applications for potential vegetation phenology monitoring and modeling: a comprehensive review. Geo-spatial Information Science24(2), 179-200.

Schleich, A., Soma, M., Durrieu, S., Véga, C., Renaud, J.-P., & Bouriaud, O. (2021). Improving GEDI Footprint Geolocation using a High Resolution Digital Terrain Model. In Proceedings of the SilviLaser Conference 2021 (pp. 179–181).

Spracklen, B., & Spracklen, D. V. (2021). Determination of Structural Characteristics of Old-Growth Forest in Ukraine Using Spaceborne LiDAR. Remote Sensing13(7), 1233.

Verhelst, K., Gou, Y., Herold, M., & Reiche, J. (2021). Improving forest baseline maps in tropical wetlands using gedi-based forest height information and sentinel-1. Forests12(10), 1374.

Vittucci, C., Guerriero, L., Ferrazzoli, P., Richaume, P., & Kerr, Y. H. (2021). SMOS L-VOD Retrieved by Level 2 Algorithm and its Correlation With GEDI LIDAR Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing14, 11870-11878.

Walter, J. A., Rodenberg, C. A., Stovall, A. E., Nunez‐Mir, G. C., Onufrieva, K. S., & Johnson, D. M. (2021). Evaluating the success of treatments that slow spread of an invasive insect pest. Pest Management Science77(10), 4607-4613.

Xiang, J., Li, H., Zhao, J., Cai, X., & Li, P. (2021). Inland water level measurement from spaceborne laser altimetry: Validation and comparison of three missions over the Great Lakes and lower Mississippi River. Journal of Hydrology597, 126312.

Yao, J., Tang, X., Li, G., Chen, J., Zuo, Z., Ai, B., … & Guo, J. (2021). Influence of Atmospheric Scattering on the Accuracy of Laser Altimetry of the GF-7 Satellite and Corrections. Remote Sensing14(1), 129.

Zhang, S., Véga, C., Bouriaud, O., Durrieu, S., & Renaud, J.-P. (2021). Unit-level Small Area Estimation of Forest Inventory with GEDI Auxiliary Information. In Proceedings of the SilviLaser Conference 2021 (pp. 136–138).

Zhang, Z., Jin, S., Guo, X., & Bo, Y. (2021, November). Water Level Variation in Qinghai Lake from Global Ecosystem Dynamics Investigation (GEDI) Altimetry Data. In 2021 Photonics & Electromagnetics Research Symposium (PIERS) (pp. 2248-2253). IEEE.

2020

Boucher, P. B., Hancock, S., Orwig, D. A., Duncanson, L., Armston, J., Tang, H., … & Elmes, A. (2020). Detecting change in forest structure with simulated GEDI lidar waveforms: A case study of the Hemlock Woolly Adelgid (HWA; Adelges tsugae) infestation. Remote Sensing12(8), 1304.

Burns, P., Clark, M., Salas, L., Hancock, S., Leland, D., Jantz, P., Dubayah, R. and Goetz, S.J. (2020). Incorporating canopy structure from simulated GEDI lidar into bird species distribution models. Environmental Research Letters, 15 (9), 95002.

Dubayah, R., Blair, J.B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., Kellner, J., Luthcke, S., & Armston, J. (2020) The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Science of Remote Sensing, p.100002.

Duncanson, L., Neuenschwander, A., Hancock, S., Thomas, N., Fatoyinbo, T., Simard, M., Silva, C.A., Armston, J., Luthcke, S.B., Hofton, M., Kellner, J., Dubayah, R. (2020) Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sensing of Environment. 242. 111779.

Healey, S. P., Yang, Z., Gorelick, N., & Ilyushchenko, S. (2020). Highly local model calibration with a new GEDI LiDAR asset on Google Earth Engine reduces landsat forest height signal saturation. Remote Sensing, 12(17), 2840.

Marselis, Suzanne M., Katharine Abernethy, Alfonso Alonso, John Armston, Timothy R. Baker, Jean‐Francois Bastin, Jan Bogaert et al. (2020). Evaluating the potential of full‐waveform lidar for mapping pan‐tropical tree species richness. Global Ecology and Biogeography. 001– 18. 

Marshak, C., Simard, M., Duncanson, L., Silva, C. A., Denbina, M., Liao, T. H., … & Armston, J. (2020). Regional Tropical Aboveground Biomass Mapping with L-Band Repeat-Pass Interferometric Radar, Sparse Lidar, and Multiscale Superpixels. Remote Sensing12(12), 2048.

Sanchez-Lopez, N., Boschetti, L., Hudak, A. T., Hancock, S., & Duncanson, L. I. (2020). Estimating Time Since the Last Stand-Replacing Disturbance (TSD) from Spaceborne Simulated GEDI Data: A Feasibility Study. Remote Sensing12(21), 3506. 

Schneider, F. D., Ferraz, A. A., Hancock, S., Duncanson, L. I., Dubayah, R. O., Pavlick, R. P., & Schimel, D. S. (2020). Towards mapping the diversity of canopy structure from space with GEDI. Environmental Research Letters.

Sun, X., Blair, J. B., Bufton, J. L., Faina, M., Dahl, S., Bérard, P., & Seymour, R. J. (2020, March). Advanced silicon avalanche photodiodes on NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission. In Photonic Instrumentation Engineering VII (Vol. 11287, p. 1128713). International Society for Optics and Photonics.

Adam, M., Urbazaev, M., Dubois, C., & Schmullius, C. (2020). Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sensing12(23), 3948.

Fayad, I., Baghdadi, N., Bailly, J. S., Frappart, F., & Zribi, M. (2020). Analysis of GEDI Elevation Data Accuracy for Inland Waterbodies Altimetry. Remote Sensing12(17), 2714.

Kumar, S., Govil, H., Srivastava, P. K., Thakur, P. K., & Kushwaha, S. P. (2020). Spaceborne multifrequency PolInSAR-based inversion modelling for forest height retrieval. Remote Sensing12(24), 4042.

Lin, X., Xu, M., Cao, C., Dang, Y., Bashir, B., Xie, B., & Huang, Z. (2020). Estimates of forest canopy height using a combination of ICESat-2/ATLAS data and stereo-photogrammetry. Remote Sensing12(21), 3649.

Puletti, N., Grotti, M., Ferrara, C., & Chianucci, F. (2020). Lidar-based estimates of aboveground biomass through ground, aerial, and satellite observation: a case study in a Mediterranean forest. Journal of Applied Remote Sensing14(4), 044501.

Tan, P., Zhu, J., Fu, H., Wang, C., Liu, Z., & Zhang, C. (2020). Sub-Canopy Topography Estimation from TanDEM-X DEM by Fusing ALOS-2 PARSAR-2 InSAR Coherence and GEDI Data.Sensors20(24), 7304.

2019

Eegholm, B., Wake, S., Denny, Z., Dogoda, P., Poulios, D., Coyle, B., … & Blair, B. (2019, August). Global Ecosystem Dynamics Investigation (GEDI) instrument alignment and test. In Optical Modeling and System Alignment (Vol. 11103, pp. 53-70). SPIE.

Hancock, S., Armston, J., Hofton, M., Sun, X., Tang, H., Duncanson, L. I., James R. Kellner, & Dubayah, R. (2019). The GEDI Simulator: A Large‐Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions. Earth and Space Science, 6(2), 294-310.

Lee, S. K., Fatoyinbo, T., Marselis, S. M., Qi, W., Hancock, S., Armston, J., & Dubayah, R. (2019, July). Spaceborne data fusion for large-scale forest parameter estimation: GEDI LiDAR & Tandem-X INSAR missions. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 4491-4494). IEEE.

Marselis, S. M., Tang, H., Armston, J., Abernethy, K., Alonso, A., Barbier, N., … & Lee, S. K. (2019). Exploring the relation between remotely sensed vertical canopy structure and tree species diversity in Gabon. Environmental Research Letters14(9), 094013.

Pardini, M., Armston, J., Qi, W., Lee, S.K., Tello, M., Cazcarra Bes, V., Choi, C., Papathanassiou, K.P., Dubayah, R.O., & Fatoyinbo, L.E. (2019) Early Lessons on Combining Lidar and Multi-baseline SAR Measurements for Forest Structure Characterization. Surveys in Geophysics, 40 (4), 803–837.

Patterson, P.L., Healey, S.P., Ståhl, G., Saarela, S., Holm, S., Andersen, H., Dubayah, R.O., Duncanson, L., Hancock, S., & Armston, J.(2019) Statistical properties of hybrid estimators proposed for GEDI—NASA’s global ecosystem dynamics investigation. Environmental Research Letters, 14 (6).

Qi, W., Lee, S. K., Hancock, S., Luthcke, S., Tang, H., Armston, J., & Dubayah, R. (2019). Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data. Remote Sensing of Environment, 221, 621-634.

Qi, W., Saarela, S., Armston, J., Ståhl,G., & Dubayah, R. (2019). Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data. Remote Sensing of Environment, 232, 111-283.

Tang, H., Armston, J., Hancock, S., Marselis, S., Goetz, S., & Dubayah, R. (2019). Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sensing of Environment231, 111262.

Wake, S., Ramos-Izquierdo, L. A., Eegholm, B., Dogoda, P., Denny, Z., Hersh, M., … & Blair, J. B. (2019, September). Optical system design and integration of the Global Ecosystem Dynamics Investigation Lidar. In Infrared Remote Sensing and Instrumentation XXVII (Vol. 11128, pp. 99-111). SPIE.

Albinet, C., Whitehurst, A. S., Jewell, L. A., Bugbee, K., Laur, H., Murphy, K. J., … & Duncanson, L. (2019). A joint ESA-NASA multi-mission algorithm and analysis platform (MAAP) for biomass, NISAR, and GEDI. Surveys in Geophysics40(4), 1017-1027.

Coyle, D. B., Stysley, P. R., Chirag, F. L., Frese, E., & Poulios, D. (2019, September). The global ecosystem dynamics investigation (GEDI) lidar laser transmitter. In Infrared Remote Sensing and Instrumentation XXVII (Vol. 11128, pp. 112-125). SPIE.

Klein, V., & Axelrad, P. (2019). Advanced multipath modeling and validation for GPS onboard the International Space Station. Navigation66(3), 559-575.

Tian, J., Wang, L., Li, X., Yin, D., Gong, H., Nie, S., … & Xu, R. (2019). Canopy height layering biomass estimation model (CHL-BEM) with full-waveform LiDAR. Remote Sensing11(12), 1446.

Wake, S., Ramos-Izquierdo, L. A., Eegholm, B., Dogoda, P., Denny, Z., Hersh, M., … & Blair, J. B. (2019, September). Optical system design and integration of the Global Ecosystem Dynamics Investigation Lidar. In Infrared Remote Sensing and Instrumentation XXVII (Vol. 11128, p. 111280J). International Society for Optics and Photonics.

2015-2017

2017

Milenković, M., Schnell, S., Holmgren, J., Ressl, C., Lindberg, E., Hollaus, M., … & Olsson, H. (2017). Influence of footprint size and geolocation error on the precision of forest biomass estimates from space-borne waveform LiDAR. Remote Sensing of Environment200, 74-88.

Rodríguez-Veiga, P., Wheeler, J., Louis, V., Tansey, K., & Balzter, H. (2017). Quantifying forest biomass carbon stocks from space. Current Forestry Reports3(1), 1-18.

2016

Qi, W., & Dubayah, R. O. (2016). Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping. Remote Sensing of Environment, 187, 253-266. DOI: 10.1016/j.rse.2016.10.018

Stysley, P. R., Coyle, D. B., Clarke, G. B., Frese, E., Blalock, G., Morey, P., … & Hersh, M. (2016, May). Laser production for NASA’s global ecosystem dynamics investigation (GEDI) lidar. In Laser Radar Technology and Applications XXI (Vol. 9832, pp. 54-61). SPIE.

2015

Coyle, D. B., Stysley, P. R., Poulios, D., Clarke, G. B., & Kay, R. B. (2015, September). Laser transmitter development for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar. In Lidar Remote Sensing for Environmental Monitoring XV (Vol. 9612, pp. 19-25). SPIE.

Stysley, P. R., Coyle, D. B., Kay, R. B., Frederickson, R., Poulios, D., Cory, K., & Clarke, G. (2015). Long term performance of the high output maximum efficiency resonator (HOMER) laser for NASA׳ s global ecosystem dynamics investigation (GEDI) lidar. Optics & Laser Technology68, 67-72.

Simple Share Buttons